

MGU INNOVATION FOUNDATION (Section 8 Company under the Companies Act, 2013) MAHATMA GANDHI UNIVERSITY Priyadarsini Hills, Kottayam – 686560 Phone: 0481- 2992684, Website: <u>www.mguif.org</u>

Tender No: MGUIF/PUR/02/2023-24

Date: 19/09/2023

TENDER NOTICE

Sub: - The Chairman, MGU Innovation Foundation (MGUIF), Mahatma Gandhi University Campus, Kottayam, invites two cover online bid (Technical & Financial bid) from reputed firms for Phase- II development of MGU Innovation Foundation which includes *Supply*, *installation and setting up of Gaussian 16, Gaussview 6, GMMX, AMPAC and TCP Linda 9 RHEL Perpetual Server License software with a perpetual license at MGU Innovation Foundation, Mahatma Gandhi University Campus*. The period of the tender is 30 days from the date of tender.

Tender documents and other tender details can be downloaded from the website: <u>https://etenders.kerala.gov.in</u>

Sl No	Description of Tender		
1.	Tender No	MGUIF/PUR/02/2023-24	
2.	Scope	Supply, installation and setting up of Gaussian 16, Gaussview 6, GMMX, AMPAC and TCP Linda 9 RHEL Perpetual Server License software with a perpetual license at MGU Innovation Foundation, Mahatma Gandhi University Campus.	
3.	Cost of Bid Document	Rs. 1,425/- (Rupees One Thousand Four Hundred Twenty-five Only) + GST (Non- Transferable and non-Refundable)	
4.	Earnest Money Deposit (EMD)	Rs.9,500/- (Rupees Nine Thousand Five Hundred Only)	
5.	Tender publishing date	19-09-2023	
6.	Last Date of Receipt of the Tender	26-09-2023 up to 5:00 PM	
7.	Date of Opening Technical Bid	28-09-2023 at 3:30 PM	
8.	Mode of Submission of Bid	The Tender details and documents can be viewed & downloaded by login into <u>https://etenders.kerala.gov.in</u> .	
9.	Address	The Chairman, MGU Innovation Foundation, Mahatma Gandhi University Campus, Kottayam, Kerala- 686560.	
10.	Contact Details	Phone: 0481- 2992684 E mail: <u>purchase@mguif.com</u>	
11.	Validity period	60 Days	
12.	Period of supply and installation	60 Days	

Note: General tender documents and tender schedule can be downloaded in A4 plain size paper free of cost from the web site <u>www.etenders.kerala.gov.in</u>

GAUSSIAN 16, GAUSSVIEW 6 AND LINDA 9 RHEL PERPETUAL SERVER LICENSE

S1	Particulars	Qty
.No		
1	GAUSSIAN 16	1.0
2	GAUSSVIEW 6	1.0
3	TCP LINDA 9	1.0
4	GMMX Module for Conformational Analysis	1 User
5	AMPAC Module for Semi Emperical calculations	1 User

Annexure A

Technical Specifications-GAUSSIAN 16

Sl.No	Features	Descriptions
1	Fundamental Algorithms	 Calculation of one- & two-electron integrals over any contracted gaussian functions Conventional, direct, semi-direct and in-core algorithms Linearized computational cost via automated fast multipole methods (FMM) and sparse matrix techniques Harris initial guess Initial guess generated from fragment guesses or fragment SCF solutions Density fitting and Coulomb engine for pure DFT calculations, including automated generation of fitting basis sets O(N) exact exchange for HF and hybrid DFT 1D, 2D, 3D periodic boundary conditions (PBC) energies & gradients (HF & DFT) Shared-memory (SMP), cluster/network and GPU-based parallel execution
2	Model Chemistries	 Molecular Mechanics Amber, DREIDING and UFF energies, gradients, and frequencies Custom force fields Standalone MM program
3	Ground State Semi-Empirical	 CNDO/2, INDO, MINDO3 and MNDO energies and gradients AM1, PM3, PM3MM, PM6 and PDDG energies, gradients and reimplemented (analytic) frequencies PM7: original and modified for continuous potential energy surfaces Custom semi-empirical parameters (Gaussian and MOPAC External formats)

		DFTB and DFTBA methods
4	Self Consistent	• SCF restricted and unrestricted energies, gradients and
	Field (SCF)	frequencies, and RO energies and gradients
		• EDIIS+CDIIS default algorithm; optional Quadratic
		Convergent SCF
		• SCF procedure enhancements for very large calculations
		• Complete Active Space SCF (CASSCF) energies,
		gradients & frequencies
		• Active spaces of up to 16 orbitals
		 Restricted Active Space SCF (RASSCF) energies and gradients
		 Generalized Valence Bond-Perfect Pairing energies and
		gradients
		• Wavefunction stability analysis (HF & DFT)
5	Density	• Closed and open shell energies, gradients & frequencies,
	Functional	and RO energies & gradients are available for all DFT
	Theory	methods.
	5	•
		• EXCHANGE FUNCTIONALS: Slater, Xα, Becke 88,
		Perdew-Wang 91, Barone-modified PW91, Gill 96, PBE,
		OPTX, TPSS, revised TPSS, BRx, PKZB, ωPBEh/HSE,
		PBEh
		• CORRELATION FUNCTIONALS: VWN, VWN5,
		LYP, Perdew 81, Perdew 86, Perdew-Wang 91, PBE,
		B95, TPSS, revised TPSS, KCIS, BRC, PKZB, VP86,
		V5LYP
		• OTHER PURE FUNCTIONALS: VSXC, HCTH
		functional family, tHC1H, B9/D, M06L, SOGGA11,
		MIIL, MNIZL, NIZ, MNI5L UVDDID METHODS, D2I VD, D2D86, D2D801, D1
		• HIDKID WEIHODS: DJLIP, DJP60, PJP W91, DI and variations, D09, D07, 1, D07, 2, DDE1DDE
		ally variations, D90, D97-1, D97-2, FDE1FDE,
		\mathbf{PM} AED M05 M052X M06 M06HE M062X
		M08HX PW6R95 PW6R95D3 M11 SOGGA11X
		N12 MN12SX N12SX MN15 HISSEPRE X31 YP
		BHandHI YP: user-configurable hybrid methods
		• DOUBLE HYBRID: B2PL YP & mPW2PL YP and
		variations with dispersion, DSDPBEP86, PBE0DH.
		PBEOIDH (see also below in "Electron Correlation")
		• EMPIRICAL DISPERSION: PFD, GD2, GD3, GD3BJ
		• FUNCTIONALS INCLUDING DISPERSION: APFD,
		B97D3, B2PLYPD3
		 LONG RANGE-CORRECTED: LC-ωPBE, CAM-
		B3LYP, ω B97XD and variations, Hirao's general LC
		correction
		Larger numerical integrations grids
6	Electron	• All methods/job types are available for both closed and
	Correlation	open shell systems and may use frozen core orbitals;
		restricted open shell calculations are available for MP2,
		MP3, MP4 and CCSD/CCSD(1) energies.
		 MP2 operations gradients and frequencies
		 IVII 2 energies, gradients, and inequencies Double hybrid DET energies, gradients and frequencies
		with optional empirical dispersion (see list in "Density

		 Functional Theory" above) CASSCF calculations with MP2 correlation for any specified set of states MP3 and MP4(SDQ) energies and gradients MP4(SDTQ) and MP5 energies Configuration Interaction (CISD) energies & gradients Quadratic CI energies & gradients; QCISD(TQ) energies Coupled Cluster methods: restartable CCD, CCSD energies & gradients, CCSD(T) energies; optionally input amplitudes computed with smaller basis set Optimized memory algorithm to avoid I/O during CCSD iterations Brueckner Doubles (BD) energies and gradients, BD(T) energies; optionally input amplitudes & orbitals computed with a smaller basis set
		• Enhanced Outer Valence Green's Function (OVGF) methods for ionization potentials & electron affinities
		 Complete Basis Set (CBS) MP2 Extrapolation Douglas-Kroll-Hess scalar relativistic Hamiltonians
7	Automated High	 G1, G2, G3, G4 and variations
	Accuracy	• CBS-4, CBS-q, CBS-QB3, ROCBS-QB3, CBS-Q, CBS-
	Energies	APNO
		• w10, w1BD, w1RO (ennanced core correlation energy calculation)
8	Basis Sets and	• STO-3G, 3-21G, 6-21G, 4-31G, 6-31G, 6-31G ⁺ , 6-311G,
	DFT Fitting Sets	D95, D95V, SHC, CEP-nG, LanL2DZ, cc-
		pV{D,T,Q,5,6}Z, Dcc-p{D,T}Z, SV, SVP, TZV, QZVP, EPR-II, EPR-III, Midi!, UGBS*, MTSmall, DG{D, T}ZVP, CBSB7
		 Augmented cc-pV*Z schemes: Aug- prefix, spAug-, dAug-, Truhlar calendar basis sets (original and regularized)
		• Effective Core Potentials (through second derivatives):
		LanL2DZ, CEP through Rn, Stuttgart/Dresden
		Support for basis functions and ECPs of arbitrary angular momentum
		 DFT FITTING SETS: DGA1, DGA1, W06, older sets
		designed for SVP and TZVP basis sets; auto-generated
0	Coometry	fitting sets; optional default enabling of density fitting
9	Optimizations	• Geometry optimizations for equinorital structures, transition structures, and higher saddle points, in
	and Reaction	redundant internal, internal (Z-matrix), Cartesian, or
	Modeling	mixed internal and Cartesian coordinates
		 GEDIIS optimization algorithm Redundant internal coordinate algorithm designed for
		large system, semi-empirical optimizations
		Newton-Raphson and Synchronous Transit-Guided
		Quasi-Newton (QST2/3) methods for locating transition
		 IRCMax transition structure searches
		• Relaxed and unrelaxed potential energy surface scans
		• Implementation of intrinsic reaction path following
		(IRC), applicable to ONIOM QM:MM with thousands of atoms

		Reaction path optimization
		• BOMD molecular dynamics (all analytic gradient
		methods): ADMP molecular dynamics: HF_DFT
		ONIOM(MO)MM)
		Ontoni(NO.NIN)
		• Optimization of conical intersections via state-averaged
		CASSCF
		Generalized internal coordinates for complex
		optimization constraints
10	Vibrational	• Vibrational frequencies and normal modes (harmonic
	Frequency	and anharmonic), including display/output limiting to
	Analysis	specified atoms/residues/modes (optional mode sorting)
	1	• Restartable analytic HF and DFT frequencies
		• MO:MM ONIOM frequencies including electronic
		embedding
		Analytic Infrared and static and dynamic Raman
		intensities (HF & DFT: MP2 for IR)
		• Pre-resonance Raman spectra (HE and DET)
		 Projected frequencies perpendicular to a reaction path
		• Flojected nequencies perpendicular to a feaction pair
		• NMR sineiding tensors & GIAO magnetic
		susceptionnies (HF, DF1, MP2) and enhanced spin-spin
		Vibrational aircular diabraism (VCD) rotational strengths
		• Violational circular dictrioisin (VCD) lotational strengths (HE and DET: harmonia and anharmonia)
		(III' and DI'I', national and annathome)
		• Dynamic Kaman Optical Activity (KOA) intensities
		(narmonic and BOA intensities coloulated concretely from
		• Raman and ROA mensules calculated separately from
		force constants in order to use a larger basis set
		Harmonic vibration-rotation coupling
		• Enhanced anharmonic vibrational analysis, including IR
		intensities, DCP12 & HDCP12 method for resonance-
		free computations of anharmonic frequencies
		• Anharmonic vibration-rotation coupling via perturbation
		theory
		Hindered rotor analysis
11	Molecular	 Population analysis, including per-orbital analysis for
	Properties	specifed orbitals: Mulliken, Hirshfeld, CM5
		• Computed atomic charges can be saved for use in a later
		MM calculation
		• Electrostatic potential, electron density, density gradient,
		Laplacian, and magnetic shielding & induced current
		densities over an automatically generated grid
		 Multipole moments through hexadecapole
		Biorthogonalization of MOs (producing corresponding
		orbitals)
		• Electrostatic potential-derived charges (Merz-Singh-
		Kollman, CHelp, CHelpG, Hu-Lu-Yang)
		 Natural orbital analysis and natural transition orbitals
		• Natural Bond Orbital (NBO) analysis, including orbitals
		for CAS jobs. Integrated support for NBO3; external
		interface to NBO6
		• Static and frequency-dependent analytic polarizabilities
		and hyperpolarizabilities (HF and DFT); numeric 2nd
		hyperpolarizabilities (HF; DFT w/ analytic 3rd derivs.)
		• Approx. CAS spin orbit coupling between states
		• Enhanced optical rotations and optical rotary dispersion

		(ORD)
		 Hyperfine spectra components: electronic g tensors, Fermi contact terms, anisotropic Fermi contact terms, rotational constants, dipole hyperfine terms, quartic centrifugal distortion, electronic spin rotation tensors, nuclear electric quadrupole constants, nuclear spin rotation tensors ONIOM integration of electric and magnetic properties
12	ONIOM Calculations	 Enhanced 2 and 3 layer ONIOM energies, gradients and frequencies using any available method for any layer Optional electronic embedding for MO:MM energies, gradients and frequencies implemented so as to include all effects of the MM environment without neglecting terms in its coupling with the QM region Enhanced MO:MM ONIOM optimizations to minima and transition structures via microiterations including electronic embedding Support for IRC calculations
13	Excited States	ONIOM integration of electric and magnetic propertiesZINDO energies
		 CI-Singles energies, gradients, & freqs. Restartable time-dependent (TD) HF & DFT energies, gradients and frequencies. TD-DFT can use the Tamm-Dancoff approximation. SAC-CI energies and gradients EOM-CCSD energies and gradients (restartable); optionally input amplitudes computed with a smaller basis set Franck-Condon, Herzberg-Teller and FCHT analyses Vibronic spectra including electronic circular dichroism (ECD) rotational strengths (HF and DFT) Resonance Raman spectra Ciofini's excited state charge transfer diagnostic (Dct) Caricato's EOMCC solvation interaction models CI-Singles and TD-DFT in solution State-specific excitations and de-excitations in solution An energy range for excitations can be specified for CIS and TD excitation energies
14	Self-Consistent Reaction Field Solvation Models	 New implementation of the Polarized Continuum Model (PCM) facility for energies, gradients and frequencies Solvent effects on vibrational spectra, NMR, and other properties Solvent effects for ADMP trajectory calcs. Solvent effects for ONIOM calculations Enhanced solvent effects for excited states SMD model for ΔG of solvation Other SCRF solvent models (HF & DFT): Onsager energies, gradients and freqs., Isodensity Surface PCM (I-PCM) energies and Self-Consistent Isodensity Surface PCM (SCI-PCM) energies and gradients
15	Ease-of-Use Features	 Automated counterpoise calculations Automated optimization followed by frequency or single point energy Ability to easily add, remove, freeze, differentiate

		and and intermediate and a
		redundant internal coords.
		• Simplified isotope substitution and temperature/pressure
		specification in the route section
		• Optimizations
		• Retrieve the nth geometry from a checkpoint file
		• Recompute the force constants every nth step of a
		geometry optimization
		• Reduce the maximum number of allowed steps,
		including across restarts
		• 180° flips detected and suppressed for better
		visualization
		• Freezing by fragment for ONIOM optimizations
		Simplified fragment definitions on molecule
		specifications
		 Many more restartable job types
		 Atom freezing in optimizations by type.
		ONIOM layer and/or residue
		on a set and of residue
		• OST2/OST2 automated transition structure optimizations
		 QS12/QS15 automated transition structure optimizations Saving and reading normal modes
		• Saving and reading normal modes
		• %OldClik Llik 0 command specifies read-only sheekpoint file for date ratrioval
		Default Doute file for setting coloulation defaults
		• Default. Route file for setting calculation defaults
		• Enhanced set of equivalent Default. Route directives,
		Link 0 commands, command line options and
1.6	· · · · ·	environment variables
16	Integration with	• NBO 6
	External	• COSMO/RS
	Programs	• AIMPAC WtnX files
		• Antechamber
		ACID
		 Pickett's program
		• DFTB input file
		• General external interface script-based automation,
		results post-processing, interchanging data/calculation
		results with other programs, and so on:
		• Interface routines in Fortran, Python and Perl (open
		source)
		• Keyword and Link 0 command support

Technical Specifications-GAUSSVIEW 6

Sl. No	Features	Descriptions
1	Examine Molecular Structures	 Rotate, translate and zoom in 3D in any display using mouse operations and/or a precision positioning toolbar View numeric value for any structural parameter Use multiple synchronized or independent views of same structure (customizable) Manipulate multiple structures as an ensemble Display formats: wire frame, tubes, ball & stick/bond type, space fill (CPK) style View per-atom labels for element, serial number, NMR

		shielding (when available)
		• Visualize depth with fog feature
		 Display stereochemistry info
		Highlight, display or hide atoms based on rich selection
		capabilities (optionally persistent)
2		• Convenient palettes for atoms, functional groups, rings,
		amino acids (central fragment, amino- or carboxyl-
		terminated) and nucleosides (central fragment, C3'- C5'-
		terminated free forms)
		Custom fragment libraries
		 Import standard molecule file formats:
		 DDP including ones created by AMPED Optionally.
		• IDD, including ones created by AMDER. Optionally
		on DDP import
		On FDB import.
		• Gaussian input (.g]1 and .com), output (.log), checkpoint
		(.cnk and .icnk), cube (.cub), and frequency (.girq) files
		• Sybyl .mol2, .ml2.; include/convert .mol2 lone pairs
		• MDL files: .mol, .rxn, .sdf
		Crystallographic Information files: .cif
		• Optionally include intermediate structures from
		optimizations, scans, etc.
		 Accurately add hydrogens automatically or manually to
	Build/Modify	an entire molecule or a selection
	Molecules	• An advanced open dialog, allowing options to be
		customized and retained across sessions:
		Reading intermediate geometries
		• Using the bond table and weak bond inclusion
		Gaussian input & log file load orders
		• PDB and .mol2 file settings
		• Saving the formatted checkpoint file
		• Modify bond type/length, bond angles, dihedral angles
		• Rationalize structures with an advanced clean function
		Recompute bonding on demand
		• Increase or decrease symmetry of molecular structure;
		constrain structure to specific point group
		Mirror invert structure
		• Invert structure about selected atom
		Place atom/fragment at centroid of selected atoms
		• Define named groups of atoms via:
		• Click, marquee, & brush selection modes
		• Complex filters combining atom type, number, MM
		settings, ONIOM layer
		• Select by PDB residue and/or secondary structure (e.g.,
		helix, chain)
		• Expand selections by bond or proximity
		• Use groups for display purposes and in Gaussian input
		 Specify nonstandard isotopes
		Customize fragment placement behavior
		Specify custom bonding parameters
3		Build unit cells for polymers 2D surfaces and crystals
5		(periodic boundary conditions)
		Constrain to specific space group symmetry
		Assign atoms to ONIOM layers by
		Direct selection
		 Bond provimity to specified atom
		• Dona provinity to specifica atom

	Graphical Setup for Specific Calculations	 Absolute distance from specified atom PDB file residue, secondary structure Complex selection criteria View/specify MM atom types and charges Add/redefine redundant internal coordinates Specify frozen atoms/coordinates during optimizations Set atom equivalences for QST2/QST3 TS optimizations Manipulate MOs: Select, rearrange/reoccupy orbitals for CASSCF, etc. Define fragments for fragment guess/counterpoise calculations Assign fragment-specific charges and spin multiplicities Include PDB data in molecule specification Select normal modes for frequency calculations Specify atoms for NMR spin-spin coupling Search for conformations using the GMMX add-on Full AMPAC integration if software is installed
4	Prepare and Run Gaussian Calculations	 Create input files via a menu-driven interface: Select job/method/basis from pop-up menus; related options appear automatically Supports all major Gaussian 16 features Convenient access to commonly-used general options Additional input can be entered; input sections in imported files are retained Preview input file before saving/submitting Select solvent and specify other parameters for calculations in solution Specify Link 0 commands Specify settings for multiprocessor and cluster/network parallel jobs Use calculation schemes to set up jobs from templates "Quick launch" Gaussian jobs with a single mouse click Molecule specification created automatically Optional connectivity section Monitor/control local Gaussian and utility processes Integrated, customizable queuing system Stream log files in a text-searchable window Initiate remote jobs via a script Generate job-specific input automatically PBC translation vector for periodic structures like polymers and crystals Orbital alterations Multiple molecule specifications for QST2/QST3 transition state searches Fragment guess and counterpoise per-fragment charge and spin multiplicity Apply calculation settings to a group of molecules with one click Save/submit identical jobs for a group of molecules in a single step, using unique file names

	•	Show calculation results summary, including basic
		information, optimization step data and thermochemical
		results
	•	Display results tables for a molecule group
	•	Examine atomic charges: numerical values, color atoms
		by charge, dipole moment vector
	•	Visualize atomic properties, predicted bond lengths and predicted bond orders
	•	Create surfaces and contours for molecular orbitals,
		electron density, electrostatic potential, spin density, NMR shielding density
	•	Display formats: 3D solid, translucent or wire mesh; 2D
		contour
	•	Color surfaces by a separate property
	•	Specify the desired contour plane
	•	Load cubes created by Gaussian; save computed cubes
		for future reuse; perform operations on cubes
	•	Animate normal modes:
Examining and	•	Indicate motion via displacement vector, dipole
Visualizing		derivative unit vector
Gaussian	•	Displace structures along normal mode
Results	•	Select subset of modes for display
	•	Save generated normal modes back to checkpoint file
	•	Scale frequencies
	•	Save animations as MP4 movies, with options for speed,
		aspect ratio, looping, time delay between frames and
		Irames/100p Display spectra: IR Raman NMR VCD ROA LIV Visible
	•	etc.
	•	Select Harmonic and/or Anharmonic results
	•	Customize plot displays
	•	Display multiple data sets on a single spectra plot, with optional conformational averaging
	•	Substitute isotopes in frequency analysis
	•	Specify incident light frequency for frequency- dependent calculations
	•	Display results from Gaussian trajectory calculations
	•	View energy plot of conformational search result set
	•	NMR Results:
	•	Report absolute NMR chemical shifts or relative to
		reference compound
	•	Export NMR summary data as text
	•	Animate structure sequences: geometry optimizations,
		IRC reaction paths, potential energy surface scans,
	_	Single play or continuous looping: play in reverse
	•	Single play or continuous looping; play in reverse
	-	aspect ratio and frame & endnoint delays
	•	Plots of related data are also produced
	•	Display 3D surface plots for 2-variable scan calculations

	 Customize plot and spectra displays by zooming, scaling, inverting, etc. Add molecular properties to plots Advanced plot customization; line color, canvas and background color, title, x- and y- axis settings, etc. Mixture Editor for multiple overlaid plots Save any image to a file (including customizations): Produce web graphics: JPEG, PNG and other formats Produce publication quality graphics files and printouts: TIFF, JPEG, vector graphics EPS Create images at arbitrary size and resolution Select full color or high quality grey scale formats
	Specify custom colors and/or background
	 Save plots as images or textual data files
	• Save animations in GIF, MNG, MP4 format or as
	individual frames
	Display PCM solvation cavity as a surface
Customize GaussView	 Control building toolbars individually Colors: per-element, molecule window background, surfaces, transparency Builder operation: atom and fragment join methods, adding hydrogens when needed, automated full or partial clean operations, etc. Gaussian 16 calculation settings Gaussian job execution methods Display modes Window placement and visibility Icon sizes File/directory locations Image capture and printing defaults Clean function parameters Charge distribution display defaults Custom bonding parameters GaussView Tips facility Windows file extension associations
	Customize GaussView

TERMS AND CONDITIONS: -

- 1. The product should have Lifelong warranty.
- 2. Installation, Training/Familiarization and commissioning of the software at MGU Innovation Foundation PARAMASTRA HPC, MG University Campus, Kottayam should be enclosed without any additional cost.
- 3. Tenders received after the due date will not be considered.
- 4. Financial bids of those who technically qualified alone will be evaluated.

- 5. The sample of the product should be approved by the purchasing authority.
- 6. The rates furnished by bidders shall be inclusive of statutory duties, all taxes, transportation, delivery and installation charges (taxes & Charges has to be clearly shown separately in the Financial Bid).
- 7. Once the tender has been accepted, the bidder will be liable to supply the products/execute the works to the destinations as per the Purchase/Work Order within the time stipulated for delivery.
- 8. The items supplied against the tender must strictly conform to the specifications as prescribed in tender. If there is any variation in the specification of the product supplied the same has to be replaced.
- 9. The assurance of quality, time bound supply, delivery and installation of the products/execution of works at customer site will be the sole responsibility of the bidder and they should ensure the same.
- 10. The Successful bidder on award of Purchase order based on the tender, has to return a copy of the same to MGU Innovation Hub duly signed and sealed as token of acceptance.
- 11. Transporting of materials to our customer site will be the responsibility of the supplier and hence the prices shall be inclusive of transportation charges including loading and unloading.
- 12. The assurance of quality, time bound delivery, supply and installation of the products/execution of works at customer site will be the sole responsibility of the bidder and they should ensure the same.
- 13. The successful tenderer shall submit the agreement in Rs 200/-stamp paper and within the period specified in the letter of acceptance of his tender/supply order.
- 14. If the bidder fails to honor the Purchase/Work Order or fails to deliver the products/execution of works in time, the MGU Innovation Hub will make its own arrangement for supplying the products/execution of works at the cost of the bidder. If the Corporation incurs any loss in this account, the amount will be recovered from the bidder.
- 15. MGU Innovation Hub or the ultimate customer will be doing final inspection for product/work supplied/delivered/installed and shall reject the material at the cost of supplier in case of quality/specification complaint. The rejected goods are to be removed from supply point at the expense of supplier and materials should be replaced with in time limit as intimated by MGU Innovation Hub.
- 16. The MGU Innovation Hub will in no way indemnify against any eventualities arising out of low quality of products/work/service and punishments by the legal/statutory authorities due to negligence, wilful act on the part of the bidder or his representative engaged by the bidder. All such issues are to be solved by the

bidder at his own risk.

- 17. Those who have been terminated or black listed by Govt. / Kerala/MGU Innovation Hub will not be able to participate in this tender.
- 18. Samples and specimens have to be provided as per the tender requirement wherever necessary.
- 19. Following documents are to be presented by the successful bidder for payment after supply: certificate has to be produced from the Customer department with specific remarks.
- 20. The rate offered must be valid for 60 days.
- 21. MGU Innovation Hub shall make payment to successful bidder only after collecting sales proceeds and deducting the service charges. No interest is paid to bidder for belated payments from customer department.
- 22. The Earnest Money Deposit will not bear any interest.
- 23. The Chairman, MGU Innovation Hub reserves the right to accept or reject the tender/tenders without assigning any reason thereof.
- 24. For further details contact MGU Innovation Hub, MG University Campus, Athirampuzha, Kottayam, Phone no. 8078010009

ELIGIBILITY CRITERIA

1	Bidder should be, a Company registered in India	Copy of valid Registration certificates / Copy of Certificates of incorporation
2	Cumulative Turn over shall be a minimum of average 1Cr. in last 3 financial years.	CA certified Balance sheet proof to be attached.

	Should not have been blacklisted	Self-Certificated
3	by any of the Government	
	entities under state / central	
	Govt.	
4	The bidder should have a	Copies of relevant certificates of registration
	registered number of	
	1. GST where his business	
	is located	
	2. Income tax / PAN number	
5	The bidder should have a valid	Documentary proof
	certificate issued by any Govt. of	
	India Enterprise and an office	
	in Kerala	
6	The Bidder should submit	MAF
	Manufacturer Authorization	
	Form (MAF) from the OEM for	
	all the quoted products along	
	with the technical bid	
7	Bidder should have experience	Work orders to be attached
	of having successfully	
	completed similar project.	

1) The intended bidders can verify the proposed site and building (MGU Innovation Foundation building) between 10.15 am and 4.45 pm on all working days till the last date of submission of tender.

2) Quoted price in the BOQ should be inclusive of all taxes, freight, loading & unloading / installation charges.

3) Details such as make, model, mode of operation etc., should be clearly mentioned in the quotation.

4) Quoted rates should have at least two months validity period.

5) The right to accept or reject the quotations without assigning any reason rests entirely with the undersigned.

6) The tender should be of branded quality products

7) Brochure of products and different models quoted should been closed.

8) If a negotiation meeting is convened by the undersigned, the authorized person of the firm should attend the meeting in time at their cost.

9) Payment process will be initiated only after satisfactory supply of the items and installation after receiving reports from the experts from the MGU Innovation Foundation.

10) If the date of receipt and opening of the tenders is declared a holiday, the same time of the next working day will be the last date and time for the purpose.

The bids shall be opened at the date and time specified. Further details can be had from the MG Innovation Foundation, Mahatma Gandhi University, Kottayam, Kerala-

686560 on all working days during working hours. Phoneno. Mob: 09778429535(CTO, MGUIF) 8078010009 (Purchase, MGUIF). The bidders are advised to submit their bid well in advance to avoid any kind of network problems. The under signed reserves the right to reject any or all of the tenders without assigning any reason whatsoever

Sd/-

Chairman & Managing Director MGU Innovation Foundation