

Reg. No
Name

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, SEPTEMBER 2024

Sixth Semester

Core Course—DISCRETE MATHEMATICS

(For B.Sc. Mathematics Model I and Model II)

[Prior to 2013 Admissions]

Time : Three Hours Maximum Weight : 25

Part A

Answer all questions.

Each bunch of **four** questions carries a weight of 1.

- I. 1 Define a finite graph.
 - 2 Define graph isomorphism.
 - 3 Define a complete graph.
 - 4 What is a connected graph?
- II. 5 Define diameter of a graph.
 - 6 Give an example of a tree with just one central vertex that is also a centroidal vertex.
 - 7 What is an Eulerian graph?
 - 8 Define a Hamiltonian graph.
- III. 9 State travelling salesman problem.
 - 10 Define adjacency matrix associated with a graph.
 - 11 Define a spanning tree.
 - 12 What is decryption.
- IV. 13 Give two examples of Private key Cryptosystem.
 - 14 Define a partially ordered set.

Turn over

E 6161

- 15 Write the dual of $a \land (b \lor a) = a \lor a$.
- 16 What is a bounded lattice.

 $(4 \times 1 = 4)$

Part B

Answer any **five** questions. Each question carries a weight of 1.

- 17 Show that every graph has an even number of odd vertices.
- 18 Find the adjacency matrix of the graph:

- 19 Show that if a graph is disconnected, its complement is connected.
- 20 Is there an Eulerian graph of even order and odd size? Justify.
- 21 Determine the closure of the following graph:

22 What is the secret message produced from the message "MEET YOU IN THE PARK".

E 6161

23 Is the following lattice distributive:

Justify your answer:

24 Show that a lattice of length 2 is modular.

 $(5 \times 1 = 5)$

Part C

Answer any **four** questions.

Each question carries a weight of 2.

- 25 Show that a graph is connected if and only if it has a spanning tree.
- 26 Draw a complete graph with four vertices.
- 27 Show that the Petersen graph is not Hamiltonian.
- 28 Write the incidence matrix of the graph given below:

- 29 Encrypt the message STOP using the RSA cryptosystem with key (25, 37, 13).
- 30 Let L be a lattice. Show that $a \wedge b = a$ if and only if $a \vee b = b$.

 $(4 \times 2 = 8)$

Turn over

Part D

Answer any **two** questions.

Each question carries a weight of 4.

- 31 Show that a graph is bipartite if and only if it contains no odd cycles.
- 32 Show that for a non-trivial connected graph G, the following statements are equivalent.
 - (a) G is Eulerian.
 - (b) The degree of each vertex of G is an even positive integer.
 - (c) G is an edge-disjoint union of cycles
- 33 Consider the following lattice L.

- (a) Which non-zero elements are join irreducible
- (b) Which elements are atoms?
- (c) Which of the following are sub-lattices of L?

$$L_1 : \{o, a, b, I\}, L_2 : \{o, a, e, I\}$$

$$L_3: \{a, c, d, I\}, L_4: \{o, c, d, I\}$$

- (d) Is L distributive.
- (e) Find the complements, if they exist for the elements $a,\,b,\,c.$
- (f) Is L a complemented lattice.

 $(2 \times 4 = 8)$

