

Reg. No	
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, SEPTEMBER 2024

Sixth Semester

B.Sc. Computer Science

Core Course—PARALLEL PROCESSING

(Prior to 2013 Admissions)

Time: Three Hours Maximum Weight: 25

Part A (Objective Type Questions)

Answer **all** Questions.

A bunch of four questions carries a weight of 1.

I.	1	DMA stands for ———.				
		(a)	Data Memory Access.	(b)	Direct Memory Access.	
		(c)	Direct Multiprocessor Access.	(d)	None of the above.	
	2	OF st	ands for ———.			
		(a)	Operand fetch.	(b)	Operator fetch.	
		(c)	Operating fetch.	(d)	None of the above.	
	3	MIMD stands for ———.				
		(a)	Multiple Input stream multiple data stream.			
		(b)	Multiple Instruction stream multiple data stream.			
		(c)	Multiple Input stream multiple device stream.			
		(d)	Multiple Instruction stream multiple data stream.			
	4	Array	processor is a ——— par	allel	computer.	
		(a)	Asynchronous.	(b)	Synchronous.	
		(c)	Vector.	(d)	Raster.	
II.	5	IBM 3	360/91 computer uses ————	— г	s a main feature.	
		(a)	Vectoring.	(b)	Rastering.	
		(c)	Pipelining.	(d)	None of the above.	

	6	A —	A — performs overlapped computations.			
		(a)	Multiprocessor.	(b)	Array processor.	
		(c)	Pipeline computer.	(d)	None of the above.	
7		PDP-10 is a ———.				
		(a)	Vector processor.	(b)	Raster processor.	
		(c)	Multiprocessor	(d)	None.	
	8	IPC s	tands for ———.			
		(a)	Interpipeline control.	(b)	Interprocess control.	
		(c)	$Interpipe line\ communication.$	(d)	Interprocesscommunication.	
III.	9	The a	verage number of words accesse	ed pe	r second is ———.	
		(a)	Access rate.	(b)	Latency.	
		(c)	Demand rate.	(d)	Memory bandwidth.	
	10	Eddy	is a ———.			
		(a)	Static data flow computer.			
		(b)	Dynamic data flow computer.			
		(c)	VLSI data flow computer.			
		(d)	None of the above.			
	11	FORK	X, statement is for —————			
		(a)	Latency.	(b)	Redundancy.	
		(c)	Concurrency.	(d)	None of the above.	
	12	Barre	l shifters are known as ———			
		(a)	PM2I.	(b)	PMI2.	
		(c)	PIM2.	(d)	PI2M.	
IV.	13	A phy	sical path is actually establishe	d bet	ween source and destination in ———.	
		(a)	Circuit switching.	(b)	Packet switching.	
		(c)	ATM.	(d)	Message switching.	

14	Systolic array is a							
	(a) Vector computing structure.							
	(b) Raster computing structure.							
	(c) VLSI computing structu	e.						
	(d) None of the above.							
15	FTS stands for ———.							
	(a) First token slicing.	(b) First ti	me slicing.					
	(c) Fixed token slicing.	(d) Fixed t	ime slicing.					
16	Semaphores are handled in —	section o	of a process.					
	(a) Entry.	(b) Exit.						
	(c) Critical.	(d) Remain						
	Part B (S	hort Answer Que	$(4 \times 1 = 4)$ estions)					
	Ansu	er any five Questic uestion carries 1 we	ons.					
17	What is cycle stealing?							
18	What is the difference between timesharing and multiprogramming?							
19	What are the different network topologies?							
20	What is memory interleaving?							
21	What is an array pipeline?							
22	2 What is a multistage network?							
23	B What is a loosely coupled microprocessor?							
24	What is static priority algorithm	?						
			$(5\times 1=5)$					
	Part C (Short Essay Que	stions)					

25 Briefly, explain SISD computer organization.

26 Briefly, explain the classification of pipeline processors.

Turn over

Answer any **four** Questions. Each question carries 2 weight.

- 27 Briefly, explain pipelined vector processing methods.
- 28 Briefly, explain features of a processor for multiprocessing.
- 29 Briefly, classify various multiprocessor operating systems.
- 30 Briefly, explain static data flow computer.

 $(4 \times 2 = 8)$

Part D (Essay Questions)

Answer any **two** questions. Each question carries 4 weight.

- 31 Explain in detail the architecture and working of a uniprocessor system.
- 32 Explain in detail SIMD array processor with illustrations and diagrams.
- 33 Explain in detail dynamic data flow computer.

 $(2 \times 4 = 8)$

