000	0062	45	

Reg. No
Name

B.Sc. DEGREE (C.B.C.S.S) EXAMINATION, SEPTEMBER 2024

Sixth Semester

Core Course-RADIO AND FIBRE OPTIC COMMUNICATION

(For BS.c. Electronics)

[Prior to 2013 Admissions]

Time: Three Hours

Maximum Weight: 25

Part A

			Answer a	\mathbf{n}	uestions.				
			Each bunch of four ques	stion	s carries a weight of 1.				
I.	1	In El	ectromagnetic waves, polarization ———.						
		(a)	Is caused by reflection.						
		(b)	Is due to the transverse natu	re of	the waves.				
		(c)	Results from the longitudinal	nat	ure of the waves.				
		(d)	Is always vertical in an isotro	opic	medium.				
	2		defined as the highest free en two given points on earth.	quen	cy that can be used for sky wave communication				
		(a)	Critical frequency.	(b)	Cut off frequency.				
		(c)	Maximum usable frequency.	(d)	Fixed frequency.				
	3	Fadin	g occurs because of —						
		(a)	Interference between the low	er ar	nd upper rays of a sky wave.				
		(b)	Reflection between the lower	and	upper rays of a sky wave.				
		(c)	Diffraction between the lower	and	l upper rays of a sky wave.				
		(d)	All of the above.						
	4	Decre	ase in strength of signal is known	own	as:				
		(a)	Tuning.	(b)	Modulation.				

Turn over

(d) Amplification.

(c) Attenuation.

II.	5	A wave of frequency 1 GHz has wavelength of :							
		(a)	0.4 m.	(b)	0.5 m.				
		(c)	0.2 m.	(d)	0.3 m.				
	6		frequency for a given layer is the highest frequency that will be returned to earth by that layer after having been beamed straight up at it.						
		(a)	Critical frequency.	(b)	Wave frequency.				
		(c)	Maximum usable frequency.	(d)	Either (a) or (b).				
7	7	Micro	wave frequency range is:						
		(a)	5 MHz to 30 MHz.	(b)	50 MHz to 300 MHz.				
		(c)	500MHz to 30000 MHz.	(d)	500GHz to 30000 GHz.				
	8	Micro	vave link repeaters are typically 50 km. apart.						
		(a)	(a) Because of atmospheric attenuation.						
		(b)	b) Because of the earth's curvature.						
		(c)	(c) Because of output tube power limitations.						
		(d)	d) To ensure that the applied dc voltage is not excessive.						
III.	9	Which	n one of the following antenna	is b	est excited from a wave guide.				
		(a)	Biconical.	(b)	Helcal.				
		(c)	Horn.	(d)	Discone.				
	10	The f	equency band used by most satellite is ———.						
		(a)	VHF.	(b)	UHF.				
		(c)	SHF.	(d)	EHF.				
	11	The t	total noise of a satellite earth station receiving system consists of ———.						
		(a)	Sky noise.						
		(b)) Antenna and feeder noise.						
		(c)	Parametric amplifier Nose.						
		(d)	All of the above.						

12	In	а	satellite	system	•
	T11	и	Saturation	SYSTEM	

- (a) Upward link frequency is half of the downward link frequency.
- (b) Upward link frequency is greater than that of the downward link frequency.
- (c) Upward link frequency is less that that of the downward link frequency.
- (d) Upward link frequency is equal to the downward link frequency.

TT7	10	The		***	of o	laad		donondo	_
IV.	13	1 ne	maximum	range	oi a	puisea	radar	depends or	1

- (a) Pulse duration.
- (b) Pulse energy.
- (c) Pulse peak power.
- (d) Pulse repetition rate.
- 14 Doppler effect is observed for ———.
 - (a) Radial motion only.
 - (b) Tangential motion only.
 - (c) Both radial as well as tangential motions.
 - (d) Neither radial nor tangential motions.
- 15 The performance characteristics of multimode graded index fibers are :
 - (a) Better than multimode step index fibers.
 - (b) Same as multimode step index fibers.
 - (c) Lesser than multimode step index fibers.
 - (d) Negligible.

16 Multimode step index fibers have a bandwidth of:

- (a) 2 to 30 MHz km.
- (b) 6 to 50 MHz km.
- (c) 10 to 40 MHz km.
- (d) 8 to 40 MHz km.

 $(4 \times 1 = 4)$

Turn over

Part B

Answer any **five** questions.

Each question carries a weight of 1.

- 17 Define sky waves.
- 18 What do you meant by critical frequency?
- 19 Write the characteristics of line of sight over the horizon systems in microwave communications.
- 20 What is orbital sparing?
- 21 List the various multiple access methods used in satellite communication systems.
- 22 What are the factors which effect the performance of a radar?
- 23 What do you meant by bending loss of optical fibres.
- 24 Write short notes on WDM.

 $(5 \times 1 = 5)$

Part C

Answer any **four** questions. Each question carries a weight of 2.

- 25. Describe ground wave propagation. What is the angle of tilt?
- 26. Write notes on:
 - (a) Virtual height.

(b) MUF.

- (c) Skip distance.
- 27. Explain about the characteristics and working of any one microwave antenna.
- 28. Explain about the transponders. What are the main applications of transponders in satellite communication system ?
- 29. Draw the block diagram of pulsed radar system and explain its working.
- 30. Differentiate itermodel and intramodel dispersion in optical fibres.

 $(4 \times 2 = 8)$

Part D

Answer any **two** questions.

Each question carries a weight of 4.

- 31. Explain about the reflection mechanism held in ionosphere. Explain with the help of suitable diagrams.
- 32. Draw the block diagram of microwave terminal transmitter and receivers. Explain its working in detail.
- 33. Write notes on:
 - (a) Concept of C band satellite receiving system.
 - (b) Earth station.
 - (c) Path loss.

 $(2 \times 4 = 8)$

