|--|

Reg No :

INTEGRATED MSC DEGREE EXAMINATION, JUNE 2024

Second Semester

INTEGRATED MSC BASIC SCIENCE-CHEMISTRY

COMPLEMENTARY - ICH2CM05 - MATHEMATICS II - INTEGRAL CALCULUS AND DIFFERENTIAL EQUATIONS

2020 Admission Onwards

0DEA7FBA

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Write the formula to find the volume of a solid of known integrable cross section area A(x) from x=a to x=b.
- 2. Write the equation to find the volume of a solid generated by revolving about the x-axis.
- 3. Write the equation to find the arc length of the curve y = f(x) from x=a to x=b.
- 4. Sketch the following region of integration: $-2 \leq y \leq 2, \;\; y^2 \leq x \leq 4.$
- 5. Define volume of a closed, bounded region D in a space using triple integrals.
- 6. Solve $\frac{dy}{dx} + 2xy = 4x$.
- 7. Solve the initial value problem $\frac{dy}{dx} + xy = y$, given y(1) = 4.
- 8. Define parallel edges in a graph. Give an example.
- 9. Define a regular graph. Give an example.
- 10. Define proper subgraph of a graph. Give an example.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. The region enclosed by the x-axis and the parabola $y = 3x - x^2$ is revolved about the vertical line x=-1 to generate the solid. Find the volume of the solid.

^{12.} Find the area of the surface generated by revolving the curve $x = \frac{y^3}{3}$, $0 \le y \le 1$ about y-axis.

- 13. Find the volume of the region bounded above by the elliptical paraboloid $z = 10 + x^2 + 3y^2$ and below by the rectangle $R: 0 \le x \le 1, 0 \le y \le 2$.
- 14. Find the average value of $F(x, y, z) = x^2 + 9$ over the cube in the first octant bounded by the coordinate planes and the planes x=2,y=2 and z=2.
- 15. Solve $\frac{dy}{dx} = \frac{x^2 4xy 2y^2}{2x^2 + 4xy y^2}$.
- 16. Solve $(2xy + y tan y)dx + (x^2 xtan^2 y + sec^2 y + 2)dy = 0.$
- 17. Define a graph. Give an example in which a graph provide natural mathematical model.
- 18. Define adjacency matrix of a graph. Draw the graphs having the following matrices as adjacency matrices:

a)	0	1	0	0					3	
	1	0	2	2	b)	1	0	3	2	
	0	2	1	2		2	3	0	1	
	0	2	2	1_		3	2	1	0	

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

- 19. a) Find the volume of the solid generated by revolving the region bounded by
 - $x = \sqrt{5}y^2$, x = 0, y = -1, y = 1 about the y-axis. b)Find the volume of the solid generated by revolving the region between the y-axis and the curve $x = \frac{2}{y}$, $1 \le y \le 4$, about the y-axis
- 20. a) Define average value of a function over a region R in a plane. Find the average value of f(x,y) = xcosxy over the rectangle $R: 0 \le x \le \pi, 0 \le y \le 1$.. b)Find the average value of f(x,y) = sin(x+y) over the rectangle $0 \le x \le \pi, 0 \le y \le \pi$. c)Find the average value of $f(x,y) = \frac{1}{xy}$ over the square $ln2 \le x \le 2ln2, ln2 \le y \le 2ln2$.
- 21. Solve a) $2xy\,dy+(2y^2+3x)dx=0.$ b) $(4xy+y^2)dx-(2x^2-2y)dy=0.$
- 22. Solve a) $x^2y x^3y' = y^4cosx.$ b) $xy^2rac{dy}{dx} + y^3 = 1.$

(2×5=10 weightage)

