

QP CODE: 23800333

INTEGRATED PG DEGREE EXAMINATION, DECEMBER 2023

Third Semester

INTEGRATED MSC BASIC SCIENCE-CHEMISTRY

Complementary - ICH3CM04 - PARTIAL DIFFERENTIAL EQUATIONS, ABSTRACT ALGEBRA AND ANALYTIC GEOMETRY

2020 ADMISSION ONWARDS

0E311DAA

Time: 3 Hours

Part A (Short Answer Questions)

Answer any eight questions.

Weight **1** each.

- 1. Find the focus and directrix of the parabola $y = 4x^2$.
- 2. Find the equation of the hyperbola with foci $(0,\pm4)$, vertices $(0,\pm5)$ in the standard form.
- 3. Find the directrix of the parabola $r = \frac{25}{10+10\cos\theta}$.
- 4. Is multiplication on the set of all Reral numbers a binary operation . Justify your answer.
- 5. Define finite group. Give an example.
- 6. Give an example of a cyclic subgroup of Z ,the set of integers under addition as composition.
- 7. Determine whether $f(x) = x^2$ is a permutation on R.
- 8. Write the geometrical interpretation of Newton Raphson method.
- 9. Find the order and degree of the partial differential equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} + (\frac{\partial z}{\partial y})^3 = 0.$
- 10. Find the integral curves of $\frac{dx}{z} = \frac{dy}{0} = \frac{dz}{-x}$.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

- ^{11.} Find the centre, eccentricity, foci, vertices and directrices of the ellipse $\frac{(x+1)^2}{25} + \frac{(y-3)^2}{16} = 1$.
- 12. Find the polar equation of the circle $(x-3)^2 + (y+1)^2 = 4$.

Turn Over

Weightage: 30

- 13. Show that if H and K are two Subgroups of a group G ,then $H \cap K$ is a subgroup of G.
- 14. Prove that subgroup of a cyclic group is cyclic.
- 15. Find a real root of the equation $x^3 x^2 1 = 0$ correct to 3 decimal places using Bisection method.
- 16. Find a real root of the equation $x^3 2x 5 = 0$ using the Method of False position correct to 3 decimal places.
- 17. Form a partial differential equation by eliminating arbitrary constants a and b from $z = (x a)^2 + (y b)^2$.
- 18. Obtain a partial differential equation by eliminating the arbitrary function from $z = f(xy) + g(\frac{x}{y})$.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

- 19. i) Replace the polar equation with equivalent cartesian equation. a) $rsin\theta = 0$, b) $r\cos\theta + r\sin\theta = 1$, ii) Replace the cartesian equation with equivalent polar equations, a) xy = 2 b) $(x - 5)^2 + y^2 = 25$.
- 20. Let ϕ be a homomorphism of a group G into a group G'. a) If H is a subgroup of G then prove that $\phi(H)$ is a subgroup of G'. b) If K' is a subgroup of G' then prove that $\phi^{-1}(K')$ is a subgroup of G.
- 21. Find a real root of the equation $x^3 + x^2 1 = 0$ on the interval [0,1] with an accuracy of 10^{-4} using the Method of Iteration.
- 22. Solve $(t+y+z)\frac{\partial t}{\partial x} + (t+z+x)\frac{\partial t}{\partial y} + (t+x+y)\frac{\partial t}{\partial z} = x+y+z.$

(2×5=10 weightage)