

QP CODE: 24803740

Reg No :

INTEGRATED MSC DEGREE EXAMINATION, JUNE 2024

Second Semester

COMPLEMENTARY - ICSC2CM5 - MATHEMATICS – II-LINEAR ALGEBRA

INTEGRATED MSC COMPUTER SCIENCE-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING & INTEGRATED MSC COMPUTER SCIENCE- DATA SCIENCE

2020 Admission Onwards

CC3C14AF

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions) Answer any eight questions. Weight 1 each.

- Consider the statement that 0 is an additive identity for Fⁿ: x+0=x for all x ∈ Fⁿ. Is the 0 in the equation the number 0 or the list 0? Justify your answer.
- 2. Why the empty set is not considered as a vector space?
- 3. Define a surjective function on linear map.
- 4. What can we say about the solutions of the following systems of linear equations in terms of number of equations and variables? a)homogeneous b) inhomogeneous.
- 5. Is $\mathbb{R}^2 \times \mathbb{R}^3$ isomorphic to \mathbb{R}^5 ? Justify your answer.
- 6. Define an affine subset of a vector space.
- 7. What is the difference between the upper triangular matrix and a diagonal matrix?
- 8. When we say that an operator is diagonalizable?
- 9. What is the condition for two vectors are orthogonal? Check whether the vectors (1, 0, -1), $(1, \sqrt{2}, 1)$ are orthogonal.
- 10. Define square root of linear operator.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

- 11. For the given subsets of \mathbb{F}^3 , determine whether they are subspaces of \mathbb{F}^3 . a) $\{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 = 5x_3\}$.
 - b) $\{(x_1,x_2,x_3)\in \mathbb{F}^3: x_1+2x_2+3x_3=4\}.$
- 12. Prove that every linearly independent list of vectors in a finite dimensional vector space V with length dim V is a basis of V.
- 13. Explain the algebraic properties of products of linear maps.
- 14. a) Define the matrix of a linear map $\mathcal{M}(\mathcal{T})$. b) Let $\mathcal{T} \in L(\mathbb{F}^2, \mathbb{F}^3)$ be defined by $\mathcal{T}(x, y) = (x + 3y, 2x + 5y, 7x + 9y)$. Find the matrix of \mathcal{T} with respect to the standard bases of \mathbb{F}^2 and \mathbb{F}^3 .
- 15. Find the eigenvalues and eigenvectors of the matrix $\begin{bmatrix} 2 & 6 \\ 1 & 3 \end{bmatrix}$.
- 16. Let $\mathcal{T} \in \mathcal{L}(\mathcal{V})$. If $\mathcal{T}/(null \mathcal{T})$ is injective, then prove that $(null \mathcal{T}) \cap (range \mathcal{T}) = \{0\}$.
- ^{17.} Suppose *T* is an operator on \mathbb{F}^2 whose matrix with respect to the standard basis is $\begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}$. Show that *T* is not self adjoint and *T* is normal.
- 18. Give an example of $T \in \mathcal{L}(\mathbb{C}^2)$ such that θT is the only eigenvalue of and the singular values of T are 5,0.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

19. a) State and prove the Linear Dependence Lemma.

b) Prove that in a finite-dimensional vector space, the length of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.

- 20. a) Suppose V is finite dimensional and $\mathcal{T} \in \mathcal{L}(V)$. Then prove that the following are equivalent:
 - i) ${\cal T}$ is invertible
 - ii) ${\cal T}$ is injective
 - iii) ${\cal T}$ is surjective

b) Show that for each polynomial $q\in \mathcal{P}(\mathbb{R})$, there exists a polynomial $p\in \mathcal{P}(\mathbb{R})$, with $((x^2+5x+7)p)''=q.$

- 21. State and prove the theorem on the eigenvalues of the operators on complex vector spaces.
- 22. Give an example of an orthonormal basis of $\mathcal{P}_2(\mathbf{R})$ where the inner product is given by $< p,q> = \int_{-1}^1 p(x)q(x)dx.$

(2×5=10 weightage)