QP CODE: 23800338

INTEGRATED PG DEGREE EXAMINATION, DECEMBER 2023

Third Semester

INTEGRATED MSC BASIC SCIENCE-STATISTICS

Complementary - IST3CM04 - MATHEMATICS III- VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM

2020 ADMISSION ONWARDS

D30C625C

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight **1** each.

- 1. If $ec{r}=a\,cost\hat{i}+b\,sint\hat{j}+at\,tanlpha\hat{k}$, Find $|rac{dec{r}}{dt} imesrac{d^2ec{r}}{dt^2}|$
- 2. A particle moves so that its position vector is given by $\vec{r} = coswt\hat{i} + sinwt\hat{j}$. Show that $\vec{r} \times \vec{v}$ is a constant vector.
- 3. Define unit normal vector.
- 4. Solve $\frac{dy}{dx} = e^{2x+3y}$.
- 5. Define Homogeneous Functions.
- 6. Write Leibnitz's Linear Differential Equation.
- 7. Define Linear partial differential equations of the first order.
- 8. Solve $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z} = \frac{du}{xyz}$.
- 9. Compute $L[e^{at}]$.
- 10. Write the First Shifting Property of the Laplace Transform.

(8×1=8 weightage)

.....

.....

:

:

Reg No

Name

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

- 11. If $ec{r}=x\hat{i}+y\hat{j}+z\hat{k}\,$. Show that : a) $grad(rac{1}{r})=rac{-ec{r}}{r^3}$ b) $abla r^n=nr^{n-2}ec{r}$
- 12. Find the order and degree of the following differential equations:

a)
$$\frac{d^2y}{dx^2} + 2(\frac{dy}{dx})^2 + y = 0$$

b) $y = x\frac{dy}{dx} + \frac{c}{\frac{dy}{dx}}$
c) $\left[1 + (\frac{dy}{dx})^2\right]^{\frac{3}{2}} = k\frac{d^2y}{dx^2}$
d) $\frac{dy}{dx} = x^2 - 1$

- 13. Solve $\frac{dy}{dx} x^2y = y^2e^{\frac{-1}{3}x^3}$.
- 14. Solve: $tany \frac{dy}{dx} = sin(x+y) + sin(x-y)$.
- 15. Find the order and degree of the partial differential equation $\frac{\partial^2 z}{\partial x^2} 2\frac{\partial^2 z}{\partial x \partial t} + \frac{\partial^2 z}{\partial t^2} = 0.$
- 16. Form partial differential equation from the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Also find the order and degree of that partial differential equation.
- 17. Find the Laplace Transform of 5 cost + 5 sin 3t.
- 18. Given that $L[\frac{sint}{t}] = tan^{-1}(\frac{1}{p})$, Find $L[\frac{sinat}{t}]$.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions. Weight **5** each.

19. Find divergence and curl of the following vectors:

a)
$$\vec{v} = xyz\hat{i} + 3x^2y\hat{j} + (xz^2 - y^2z)\hat{k}$$

b) $\vec{R} = (x^2 + yz)\hat{i} + (y^2 + zx)\hat{j} + (z^2 + xy)\hat{k}$

20. Check whether the differential equations are exact:

a)
$$(1 + e^{\frac{x}{y}})dx + (1 - \frac{x}{y})e^{\frac{x}{y}}dy = 0$$

b) $(x^2 + y^2 - a^2)x dx + (x^2 - y^2 - b^2)y dy = 0$
c) $(x^2y - 2xy^2)dx - (x^3 - 3x^2y) dy = 0$
d) $(\sec x \tan y \tan x - e^x)dx + (\sec^2 y \sec x)dy = 0$

0

21. Using Lagrange's Auxiliary equation , solve the following differential equations:

a)
$$(mz - ny)p + (nx - lz)q = ly - mx$$
.
b) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = xyz$

- 22. a) Using the parameter p, define the Laplace Transform.
 - b) Find the Laplace Transform of 29 and t^{11} .

(2×5=10 weightage)