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Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.
 

1.  If  , Find  

 

2.  A particle moves so that its position vector is given by . Show that    is a
constant vector.

3.  Define unit normal vector.

4.  Solve .

5.  Define Homogeneous Functions.

6.  Write Leibnitz's  Linear Differential Equation.

7.  Define Linear partial differential equations of the first order.

8.  Solve .

9.  Compute .

10.  Write the First Shifting Property of the Laplace Transform.
(8×1=8 weightage)
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Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.
 

11.  If   . Show that :

a) 

b) 
 

12.  Find the order and degree of the following differential equations:

a) 

b) 

c) ) 

d) 

13.  Solve .

14.  Solve: .

15.   Find the order and degree of the partial differential equation .

16.  Form partial differential equation from the equation . Also find the order and degree of

that partial differential equation.

17.  Find the Laplace Transform of .

18.  Given that , Find  .

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.
 

19.  Find divergence and curl of the following vectors:
a) 

b) 

20.  Check whether the differential equations are exact:

a) 

b) 
c) 
d) 
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(1 + )dx + (1 − ) dy = 0e
x

y x
y
e

x

y

( + − )xdx + ( − − )y dy = 0x2 y2 a2 x2 y2 b2

( y − 2x )dx − ( − 3 y) dy = 0x2 y2 x3 x2

(sec x tan y tanx − )dx + (se y secx)dy = 0ex c2

Page 2/3



21.  Using  Lagrange's Auxiliary equation , solve the following differential equations:
a) .
b) 

22.  a) Using the parameter p, define the Laplace Transform.
b) Find the Laplace Transform of 29 and .
 

(2×5=10 weightage)
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