

Reg No :

INTEGRATED MSC DEGREE EXAMINATION, JULY 2024

Fourth Semester

INTEGRATED MSC BASIC SCIENCE-STATISTICS

COMPLEMENTARY - IST4CM04 - MATHEMATICS IV - LINEAR ALGEBRA, THEORY OF EQUATIONS, SPECIAL FUNCTIONS, NUMERICAL METHODS

2020 Admission Onwards

826507B5

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight 1 each.

- 1. Let P be the m x m matrix that is obtained from the identity matrix I_m by permuting its rows in some way. Then prove that for any m x n matrix A the matrix PA is the matrix obtained from A by permuting its rows in precisely the same way.
- 2. Reduce to Hermite form of the matrix

- 3. Explain consistent system of linear equations.
- 4. Explain algebraic multiplicitiy.
- 5. Multiply the roots of the equation $x^4 + 2x^3 + 4x^2 + 6x + 8 = 0$ by $\frac{1}{2}$.
- 6. Prove that $x^5 + x^3 + x + 1 = 0$ has excatly one real root?
- 7. Define Eulerian Integral of I^{st} Kind.

- 8. Explain the First and Second Forward Differences.
- 9. Write the relation between $\Delta, \ \nabla \ \& \ E$
- 10. The following table gives correspoding values of x & y. Display the Forward difference table.

х	0	1	2	3	4
у	3	6	11	18	27

(8×1=8 weightage)

Page 1/2

Part B (Short Essay/Problems) Answer any six questions.

Weight 2 each.

- 11. Prove that the elementary row operations do not affect row rank.
- 12. If λ is an eigen value of $f:V \to V$ then prove that the geometric multiplicity of λ is less than or equal to the algebraic multiplicity of λ .
- 13. Expain the following Polynomials:

a) Linear	b) Incomplete
c) Quadratic	d) Real
e) Cubic	f) Complete

- 14. Solve the equation : $4x^4 20x^3 + 33x^2 20x + 4 = 0$.
- 15. Prove that $\int_0^1 \frac{dx}{\sqrt{1-x^4}} = \frac{\sqrt{\Pi}}{4} \frac{\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}$.
- 16. Prove that $\frac{1}{2}\Gamma(\frac{1}{4})\Gamma(\frac{3}{4}) = \frac{\pi}{\sqrt{2}}$.
- 17. Given that

x	1	2	3	4	5		
у	2	5	10	17	26		
Find the value of $ abla^2 y_5$.							

^{18.} Prove that
$$\Delta = rac{1}{2}\delta^2 + \delta\sqrt{1+rac{1}{4}\delta^2}$$
 .

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

19.

For the matrix $\begin{bmatrix} 1 & 2 & 0 & 3 \\ 1 & 2 & 3 & 3 \\ 1 & 0 & 1 & 1 \end{bmatrix}$, determine the maximum number of linearly independent rows and the

maximum number of linearly independent columns.

- 20. Solve by Cardon's method: $x^3 15x^2 33x + 847 = 0$
- 21. Find the value of $\Gamma(\frac{1}{2})$.
- 22. A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t sec. Find the velocity and acceleration of the slider when t = 0.3 sec

t	0	0.1	0.2	0.3	0.4	0.5	0.6
х	30.13	31.62	32.87	33.64	33.95	33.81	33.24

(2×5=10 weightage)

