QP CODE: 24803626

INTEGRATED MSC DEGREE EXAMINATION, JUNE 2024

Fifth Semester

INTEGRATED MSC BASIC SCIENCE-STATISTICS

CORE - IST5CR01 - REAL ANALYSIS I

2020 Admission Onwards

A25CB716

Time: 3 Hours

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Draw diagram in the plane of the cartesian product A× B for the given sets A={1,2,3}, B={x \in \mathbb{R}: 1 \le x \le 3}
- 2. Let $A = B = \{x \in R : -1 \le x \le 1\}$ and consider the subset $C = \{(x, y) : x^2 + y^2 = 1\}$ of $A \ge B$. Is this set a function. Justify your answer
- 3. State the principle of Mathematical induction.
- 4. Define finite set and infinite set.
- 5. If 0 < a < b, show that $a < \sqrt{ab} < b$.
- 6. Define a divergent sequence.
- 7. Give two examples of monotone decreasing sequences.
- 8. Show that a Cauchy sequence of real numbers is bounded.
- 9. State Bolzano Intermediate value theorem.
- 10. State interior extremum theorem.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

11. Let $g(x) = x^2$ and f(x) = x + 2 for $x \in R$ and let h be the composite function $h = g \circ f$. a) Find the direct image h(E) of $E = \{x \in R : 0 \le x \le 1\}$ b) Find the inverse image $h^{-1}(G)$ of $G = \{x \in R : 0 \le x \le 4\}$

Reg No :

Weightage: 30

- 12. If f is a bijection of A onto B, show that f^{-1} is a bijection of B onto A
- 13. If S and T are sets and $T \subseteq S$ then show that a) If S is a countable set, then T is a countable set. b) If T is an uncountable set, then S is an uncountable set
- 14. Let the function f be defined by $f(x) = \frac{2x^2+3x+1}{2x-1}$ for $2 \le x \le 3$. Find a constant M such that $|f(x)| \le M$ for all x satisfying $2 \le x \le 3$
- 15. Let $X = (x_n)$ and $Y = (y_n)$ be sequences of real numbers that converge to x and y respectively. Then show that the sequence XY converge xy.
- 16. State and prove monotone subsequence theorem.
- 17. Explain a) uniform continuity b) Nonuniform continuity criteria
- 18. State and prove the product rule of differentiation.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. a) Explain composite functions b) Let $f : A \to B$ and $g : B \to C$ be functions. (i) Show that if $g \circ f$ is injective, then f is injective (i) Show that if $g \circ f$ is surjective, then g is surjective
- 20. a) Show that if $I_n = [a_n, b_n]$, $n \in N$, is a nested sequence of closed , bounded intervals then there exists a number $\xi \in R$ such that $\xi \in I_n$ for all $n \in N$. b) Show that if $I_n = [a_n, b_n]$, $n \in N$, is a nested sequence of closed , bounded intervals such that the lengths $b_n - a_n$ of I_n satisfy $inf \{b_n - a_n : n \in N\} = 0$, then number ξ contained in I_n for all $n \in N$ is unique
- 21. a) State and prove root testb) State and prove ratio test
- 22. a) Let $A \subseteq R$, let f and g be functions on A to R, and let $r \in R$. Suppose that $c \in A$ and that f and g are continuous at c, then show that (i) f + g, f g, fg and rf are continuous at c (ii) If $h : A \to R$ is continuous at $c \in A$ and if $h(x) \neq 0$ for all $x \in A$, then the quotient $\frac{f}{h}$ is continuous at c. b) State and prove boundedness theorem

(2×5=10 weightage)