

QP CODE: 24803629

Reg No :

Name :

INTEGRATED MSC DEGREE EXAMINATION, JUNE 2024

Fifth Semester

INTEGRATED MSC BASIC SCIENCE-STATISTICS

CORE - IST5CR04 - STATISTICAL QUALITY CONTROL

2020 Admission Onwards

182EB7DE

Time: 3 Hours Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight 1 each.

- 1. Write down the modern definition of quality.
- 2. SQC helps in which type of variation?
- 3. Define 3sigma limits.
- 4. If $X_1 = 32.5$, $\sigma_1 = 2.5$ and $\sigma_1 = 5$. Write down the control limits for X and X and X and X and X are charts.
- 5. The following are the figures of defectivs in 22 lots each containing 2000 rubber beds 425 ,430,216,341,225,322,280,306,337,305,356,402,216,264,126,409,193,326,280,389,451,420. Find control limits for p chart.
- 6. Draw OC curve.
- 7. Mention any few disadvantages of acceptance sampling plan.
- 8. Define average outgoing quality limit.
- 9. What does average total inspection mean?
- 10. What do you mean by Single and Double Sampling Plans?

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

- 11. What are the limitations of statistical quality contol?
- 12. Briefly explian seven magnificient tools of statistical process control.

Page 1/2 Turn Over

- 13. Distinuish between specification limit and tolerance limit.
- 14. Explain variable control chart.
- 15. Fifteen boxes of electric bulbs each containing 20 bulbs were randomly selected from a lot of bulb boxes and inspected for the number of defects per box. The number of defects per box were as follows:

Box No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No.of defects	12	13	9	14	17	16	8	6	11	10	15	23	19	14	21

Draw the control chart for number of defectives and make conclusion.

16. Fifteen boxes of electric bulbs each containing 20 bulbs were randomly selected from a lot of bulb boxes and inspected for the number of defects per box. The number of defects per box were as follows:

Box No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No.of defects	12	10	9	14	17	16	5	6	11	10	17	23	19	14	21

Calculate 3-sigma limits for C-chart and draw conclusion.

- 17. What are Defects and Defectives? Give an example for a defect & defective.
- 18. Write a note on acceptable and objectionable quality levels.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. What is meant by statistical process control? And also explian seven magnificient tools of statistical process control problem solving tools.
- 20. Explain R chart.
- 21. The following data refer to the number of defective in 10 sample of 100 item each, construct an apropriate control chart and interpret in control chart.

Sample no	1	2	3	4	5	6	7	8	9	10
No.of defectives	4	8	11	3	11	7	16	12	5	8

22. Describe designing of the single sampling plan.

(2×5=10 weightage)

