QP CODE: 24803040

INTEGRATED MSC DEGREE EXAMINATION, MAY 2024

Seventh Semester

INTEGRATED MSC BASIC SCIENCE-STATISTICS

CORE - IST7CR04 - STATISTICAL INFERENCE I

2020 Admission Onwards

FDB94FC9

Time: 3 Hours

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Write an example for the situation where unbiased estimator do not exist.
- 2. State factorization criteria for sufficiency
- 3. Define curved exponential families.
- 4. Define uniformly minimum variance unbiased estimate.
- 5. What dou you meant by Blackwellisation?
- 6. Define Minimum Variance unbiased Estimator.
- 7. Write down the equation for finding the variance of maximum Likelihood estimator.
- 8. Write any few propertyies of M,M.E.'s.
- 9. Define confidence interval.
- 10. Define a decision function.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

Page 1/2

- 11. Explian the term unbiasedness.
- 12. Distinguish between Marginal and joint Consistency.

24803040

Reg No : Name :

2024

Weightage: 30

- 13. Let $x_1, x_2, ..., x_n$ be iid random variables with common variance σ^2 . Also, let $a_1, a_2, ..., a_n$ be real numbers such that $\sum a_i = 1$ and let $S = \sum_{i=1}^n a_i x_i$. Then Prove that the variance of S is least if we choose $a_i = 1/n$.
- 14. If M is a minimal sufficient statistic which is complete and there exists an unbiased estimator T of $g(\theta)$, then there exists a unique UMVUE of $g(\theta)$ which is given by E(T|M). Prove it
- 15. A random sample of size n is drawn from a normal population N(u,σ^2). Estimate u by the method of maximum likelihood.
- 16. What modification in minimum -chi square method of estimaton gives rise to the method of modified minimum chi- square?
- 17. Let X follows B(n,p) and $\pi(p) = 1$ for 0 < p < 1 be the prior distribution. Find posterior distribution.
- 18. Let X follows B(n,p) and $\pi(p) = 1$ for 0 < p < 1 be the prior distribution. Find the bayes estimator.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

19.

- 1. Define the property completeness.
- 2. Check whether the following family of p.d.f.s of X is complete
 - a) X be N(0,θ).
 - b) X is U(0, θ), θ >0
- 20. State and prove Chapman-Robbins Inequality.
- 21.

1. Briefly explain the method of moments for estimating the parameters.

2. A random variable X takes the values 0,1,2 with respective probabilities $\frac{\theta}{4N} + \frac{1}{2}(1 - \frac{\theta}{N})$,

 $\frac{\theta}{2N} + \frac{\alpha}{2}(1 - \frac{\theta}{N})$, and $\frac{\theta}{4N} + \frac{(1-\alpha)}{2}(1 - \frac{\theta}{N})$ where N is a known number and α , θ are unknown parameters. If 75 independent observations on X yielded the values 0,1,2 with frequencies 27,38,10 respectively, estimate θ and α by the method of moments

22. Consider the problem of estimation of a parameter $\theta \in \Theta \subseteq R$ with respect to the quadratic loss function $L(\theta, \delta) = (\theta - \delta)^2$. Show that the bayers solution is $\delta(x) = E(\theta/X = x)$.

(2×5=10 weightage)