000	062	237	

Reg.	No
Name	1

M.Sc. (BIOMEDICAL INSTRUMENTATION) DEGREE EXAMINATION SEPTEMBER 2023

Second Semester

DIGITAL ELECTRONICS AND INTEGRATED CIRCUITS

(2016 Admission onwards-Regular/Supplementary/Mercy Chance)

Time: Three Hours

Maximum Marks: 100

Part A

Answer any **five** questions. Each question carries 10 marks.

- 1. What is the basic concept of k-map? Explain with an example Boolean function minimization using K-map.
- 2. Explain with a neat diagram the working of a serial adder circuit.
- 3. What is a shift-register counter? Explain with diagram the working of any one shift register counter.
- 4. Discuss on the specifications of a basic TTL gate. Also explain its characteristics.
- 5. Draw and explain the internal block diagram of an Op-amp.
- 6. Explain with an example the Butterworth approximation method of filter design.

 $(5 \times 10 = 50)$

Part B

Answer any ten questions. Each question carries 5 marks.

- 1. Explain the specific applications of binary, octal and Hexa-decimal number systems.
- 2. Explain the theorems in Boolean algebra.
- 3. Draw and explain the circuit of an up-down counter.
- 4. Discuss on the noise considerations in logic families.
- 5. Explain the concept of virtual ground.
- 6. Draw and explain a log-amplifier using Op-amps.
- 7. Explain with neat diagrams the working of a zero-crossing detector. What are its applications?
- 8. Explain the principle of weighted R-2R DAC circuit.
- 9. Discuss on the transfer functions of LP, BP and all-pass filters.
- 10. Draw and explain the circuit of a voltage controlled oscillator.
- 11. Draw and explain a clamper circuit using Op-amps.
- 12. Draw and explain the working of an ADC circuit.

 $(10 \times 5 = 50)$

