Reg. N	O
Nama	

M.Sc. (BIOMEDICAL INSTRUMENTATION) DEGREE EXAMINATION OCTOBER 2023

Fourth Semester

BIOSIGNAL PROCESSING

(2021 Admissions–Regular/2016–2020 Admissions–Supplementary/Mercy Chance)

Time: Three Hours Maximum Marks: 100

Part A

Answer any **ten** questions. Each question carries 5 marks.

- 1. Explain with a diagram the characteristics and properties of PCG signals.
- 2. Discuss on the properties of discrete time signals.
- 3. State and prove theorems in Z-transform.
- 4. Explain how discrete time signals are analized in frequency domain.
- 5. What are the properties of Discrete Fourier transform?
- 6. What is block convolution? How is it calculated?
- 7. Write a note on Butterworth approximation used in the design digital filters.
- 8. Discuss on bilinear transformation method.
- 9. Compare the characteristics of Hamming, Hanning and rectangular windows.
- 10. Explain the role of DSP techniques in the evaluation of ECG signals.
- 11. Explain the properties of discrete Fourier series.
- 12. Write a brief account on the realization methods of IIR filters.

 $(10 \times 5 = 50)$

Part B

Answer any **five** questions. Each question carries 10 marks.

1. Determine whether the following system is (i) causal; (ii) stable; and (iii) LTI:

$$y(n) = e^{-x(n)}.$$

Turn over

F 6275

2. Determine the inverse z-transform of:

$$\mathbf{F}(z) = \left[5 - 2z^{-1} + z^{-2}\right] / \left[\left(1 + z^{-1}\right)^{2} \left(1 - z^{-1}\right)^{2}\right]$$

ROC: |Z| > 1

3. Compute the circular convolution of the following sequences and compare it with linear convolution:

$$x(n) = \{1,1,-1,-1\}; h(n) = \{4,3,2,1\}.$$

4. Compute the 8-point DFT of the following sequence using DIT algorithm:

$$x(n) = \{2,1,2,1,2,1,2,1\}$$
.

5. Determine (i) direct form; (ii) parallel form and (iii) cascade form structures for the system:

$$\mathbf{H}(z) = \frac{\left(1 + z^{-1}\right)^3}{\left[\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - z^{-1} + \frac{1}{2}z^{-2}\right)\right]}.$$

 $6. \quad Explain \ with \ suitable \ examples \ the \ frequency \ transformation \ technique \ of \ designing \ IIR \ filters.$

 $(5 \times 10 = 50)$

