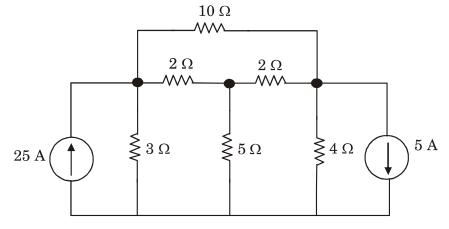

G 6416

M.Sc. (BIOMEDICAL INSTRUMENTATION) DEGREE EXAMINATION FEBRUARY 2024

First Semester

BMI 103—ELECTRICAL TECHNOLOGY


(2023 Admissions – Regular / 2020–22 Admissions – Supplementary / 2019 Admissions – First Mercy Chance / 2018 Admissions – Second Mercy Chance / 2017 Admissions – Final Mercy Chance)

Time: Three Hours Maximum Marks: 100

Part A

Answer any **five** questions. Each question carries 10 marks.

1. Using nodal analysis find currents in various resistors in the network shown in figure.

- 2. A series RLC circuit has $100 \,\Omega$ register 0.318 H inductor and C. $v = 230 \times \sqrt{2} \sin wt$ V; $i = 2.3 \sqrt{2} \sin wt$. A Given $w = 314.15 \, \text{rad/sec}$. Find (i) C, (ii) V_{L} and (iii) power.
- 3. Derive the equation for voltage regulation of 1ϕ transformer at capacitive load by drawing the phasor diagram.
- 4. Explain the methods of speed control of dc motors.
- 5. Explain the principle of operation of a synchronous motor with diagrams.
- 6. Explain with diagrams the working and applications of current and potential transformers.

 $(5 \times 10 = 50 \text{ marks})$

Turn over

D 6516

Part B

2

Answer any **ten** questions. Each question carries 5 marks.

- 1. State and explain Kirchoff's laws.
- 2. Explain star-delta transformations.
- 3. Compare parallel and series resonance of RLC circuits.
- 4. Define self inductance, mutual inductances and co-efficient of coupling. What are their significance.
- 5. Explain the two wattmeter method of 3ϕ power measurement.
- 6. Explain the construction and working of auto transformer.
- 7. Compare the characteristics of series and shunt d.c. generators.
- 8. Explain the need of starters for d.c. motors.
- 9. Explain how an induction motor is working.
- 10. Write a note on star-delta starter.
- 11. With diagrams explain the working of an a.c. servomotor.
- 12. Explain with block diagram the principle of an off-line UPS.

 $(10 \times 5 = 50 \text{ marks})$

